Preliminary communication

Nucleoside transformations. Anhydro- and halo-nucleosides by treatment of nucleoside 2',3'-ortho esters with halotrimethylsilanes

MARSHALL W. LOGUE

sulfonate as the internal standard.

Department of Chemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21228 (U. S. A.)

(Received February 10th, 1975; accepted for publication, February 19th, 1975)

There has been considerable interest in selective transformations of the vicinal diol portion of ribonucleosides¹⁻⁵. Recent reports on the conversion of cyclic ortho acetates of 1,2-diols into acetates of chlorohydrins by treatment with chlorotriphenylmethane⁶ and chlorotrimethylsilane⁷ led us to apply this procedure to ribonucleosides. The conversion of uridine via a 2',3'-ortho ester* into the corresponding 3'-O-acyl-2,2'-anhydrouridine and 3'-O-acyl-2'-deoxy-2'-halouridine (both of which are versatile intermediates for further modification of the nucleoside, e.g., ribo to arabino configuration⁸, and 2'-deoxy-2'-halouto 2'-deoxynucleosides^{2,4}) is now reported.

Treatment of 2',3'-O-(methoxyethylidene)uridine (1) with chlorotrimethylsilane in boiling acetonitrile for 10 min under reflux afforded** 2,2'-anhydro-1-(3-O-acetyl- β -D-arabinofuranosyl)uracil hydrochloride (3a) in 72% yield***; n.m.r. data (D₂O): δ 2.10 (s, 3, COCH₃), 3.51 (d, 2, J 4 Hz, H-5'), 5.28 (d, 1, J 2 Hz, H-3'), 5.48 (d, 1, J 6 Hz, H-2'), 6.00 (d, 1, J 7.5 Hz, H-5), 6.35 (d, 1, J 6 Hz, H-1'), and 7.68 (d, 1, J 7.5 Hz, H-6), whereas treatment of 1 with chlorotrimethylsilane in boiling nitromethane for 1.5 h under reflux gave 3'-O-acetyl-2'-chloro-2'-deoxyuridine (4a) in 48% yield***; n.m.r. data [(CD₃)₂SO, Me₄Si]: δ 2.08 (s, 3, COCH₃), 3.52 (d, 2, J 3 Hz, H-5'), 4.10 (q, 1, J 3 Hz, H-4'), 4.64 (d of d, 1, J_{2',1'} 7 Hz, J_{2',3'} 5 Hz, H-2'), 5.18 (d of d, 1, J_{3',2'} 5 Hz, J_{3',4'} 3 Hz, H-3'), 5.55 (d of d, 1, J_{5,6} 7 Hz, J_{5,3} 2 Hz, H-5), 5.86 (d, 1, J 7 Hz, H-1'), 7.60 (d, 1, J 7.5 Hz, H-6), and 11.15 (br s, 1, H-3). Similarly, treatment of 1 with bromotrimethylsilane in boiling dichloromethane (for 1.5 h) and acetonitrile (for 10 min) under

^{*}By treatment of their 2',3'-ortho esters with pivaloyl chloride, purine ribonucleosides have been converted¹ into the corresponding 3'-deoxy-3'-halo-xylo esters.

^{**}Ortho ester 1 was used as obtained from the crude reaction-mixture, without further purification; therefore, the yields given are based on the weight of uridine used.

^{***}Other spectral data and physical properties were comparable to the values given in the literature.

†All data from n.m.r. spectra taken in D₂O are in reference to sodium 2,2-dimethyl-2-silapentane-5-

reflux gave, respectively: (a) 2,2'-anhydro-1-(3-O-acetyl- β -D-arabinofuranosyl)uracil hydrobromide (3b) in 75% yield; m.p. 125° (dec.): $\lambda_{\rm max}^{\rm MeOH}$ 250 ($\epsilon_{\rm mM}$ 7.76) and 223 nm ($\epsilon_{\rm mM}$ 8.69); n.m.r. data (D₂O): δ 2.10 (s, 3, COCH₃), 3.51 (d, 2, J 4 Hz, H-5'), 5.28 (d, 1, J 2 Hz, H-3'), 5.50 (d, 1, J 6 Hz, H-2'), 6.02 (d, 1, J 7.5 Hz, H-5), 6.37 (d, 1, J 6 Hz, H-1'), and 7.70 (d, 1, J 7.5 Hz, H-6), and (b) 3'-O-acetyl-2'-bromo-2'-deoxyuridine (4b) in 59% yield; m.p. 150–151°; $\lambda_{\rm max}^{\rm MeOH}$ 258.5 nm ($\epsilon_{\rm mM}$ 9.25); n.m.r. data [(CD₃)₂SO, Me₄Si]: δ 2.15 (s, 3, COCH₃), 3.51 (br d, 2, J 3 Hz, H-5'), 4.00 (q, 1, J 3 Hz, H-4'), 4.60 (d of d, 1, $J_{2',1'}$ 7 Hz, $J_{2',3'}$ 5 Hz, H-2'), 5.10 (d of d, 1, $J_{3',2'}$ 5 Hz, $J_{3',4'}$ 3 Hz, H-3'), 5.52 (d of d, 1, $J_{5,6}$ 7.5 Hz, $J_{5,3}$ 2 Hz, H-5), 5.94 (d, 1, $J_{1',2'}$ 7 Hz, H-1'), 7.56 (d, 1, J 7.5 Hz, H-6), and 11.15 (br s, 1, H-3).

Both 3a and 3b were converted in 90% yield into 2,2'-anhydro-1-(3-O-acetyl-β-D-arabinofuranosyl)uracil² upon treatment* with Amberlite IR-45 (OH⁻) ion-exchange resin in methanol.

Other selective transformations of vicinal diols^{1-7,10} have been explained by invoking the intermediate formation of acetoxonium ions, and the present results can likewise be explained by intermediate formation of acetoxonium ion 2. Ion 2 is then trapped by an intramolecular participation of the carbonyl group at C-2 of the uracil ring, giving 3 at low temperatures. Under more forcing conditions, the halide ion attacks C-2' of 3 to give the ring-opened product 4 having the D-ribo configuration. This type of ring opening of 2,2'-anhydrouridine is well documented⁸.

The presented transformation procedure is appealing, in that (I) the reagents needed are readily available and preparation of 2-acetoxyisobutyryl chloride or bromide is obviated^{2,3}, (2) the excess of halotrimethylsilane and the methyl trimethylsilyl ether that is generated are very volatile and are readily removed with the solvent, leaving only the

[†]Compound 4b was converted into the known¹⁰ 3',5'-di-O-acetyl-2'-bromo-2'-deoxyuridine by treatment with acetic anhydride in pyridine.

^{*}Other spectral data and physical properties were comparable to the values given in the literature.

products, and (3) products 3 and 4 are formed in two simple steps from uridine, the hydroxyl group on C-3' being protected as the acetate, and the hydroxyl group on C-5' being left free for further modifications. The pivaloyl chloride¹, acetoxyisobutyryl chloride², and acetyl bromide¹⁰ procedures give deoxyhalonucleosides in which the hydroxyl groups on C-3' and C-5' are both protected, thus requiring an extra step for the generation of the free hydroxyl group on C-5'.

ACKNOWLEDGMENT

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

REFERENCES

- 1 M. J. Robins, R. Mengel, and R. A. Jones, J. Amer. Chem. Soc., 95 (1973) 4074-4076.
- 2 S. Greenberg and J. G. Moffatt, J. Amer. Chem. Soc., 95 (1973) 4016-4025.
- 3 A. F. Russell, S. Greenberg, and J. G. Moffatt, J. Amer. Chem. Soc., 95 (1973) 4025-4030.
- 4 M. M. Ponpipom and S. Hanessian, Can. J. Chem., 50 (1972) 246-252; 253-258.
- 5 S. Hanessian and A. P. A. Staub, Tetrahedron Lett., (1973) 3551-3554.
- 6 M. S. Newman and C. H. Chen, J. Amer. Chem. Soc., 95 (1973) 278-279.
- 7 M. S. Newman and D. R. Olson, J. Org. Chem., 38 (1973) 4203-4204.
- 8 J. F. Codington, I. L. Doerr, and J. J. Fox, J. Org. Chem., 29 (1964) 558-564; 564-569.
- 9 H. P. M. Fromageot, B. E. Griffin, C. B. Reese, and J. E. Sulston, *Tetrahedron*, 23 (1967) 2315-2331.
- 10 R. Marumoto and M. Honjo, Chem. Pharm. Bull. (Tokyo), 22 (1974) 128-134.